
Video Shot Characterization∗

Mihai Osian1, Luc Van Gool2

1 Katholieke Universiteit Leuven, ESAT/PSI
Kasteelpark Arenberg 10, 3000 Leuven, Belgium

2 Computer Vision Laboratory, ETH,
Gloriastrasse 35, CH-8092 Zurich, Switzerland

{mosian, vangool}@esat.kuleuven.ac.be

Abstract

This paper presents a practical approach to detecting shot cuts and

extracting keyframes from video sequences. Shot cut detection has two

stages - global motion compensation, followed by an adaptive threshold-

ing algorithm. The motion information is further utilized to extract rep-

resentative keyframes. Special consideration has been given to achieving

real-time performance on a regular PC, which led to a motion estimation

algorithm of linear complexity.

1 Introduction

Video sequences are one of the most difficult data types to handle and organize,
due to the quantity and complexity of the information they contain. Manual
annotation provides the best quality but is also a long and tedious process.
The first step that has to be achieved by any automated indexing system is
segmenting the video sequences into a collection of video shots. A video
shot is defined as an uninterrupted sequence of frames, corresponding to the
same scene or event. For each shot we can extract one or more keyframes

representative for the entire shot.
The change of scene which appears at the boundary between two shots is

called a shot cut. A shot cut can be abrupt - when it takes place between two
consecutive frames, or smooth - when it takes place over a short period of time
(special video effects like dissolves, fades, wipes or page turnings). Abrupt shot
cuts are the easiest to detect. Smooth cuts require extensive analysis of several
consecutive frames.

We will present in this paper an algorithm for detecting shot cuts, with
emphasis on abrupt cuts. It includes a fast global motion compensation and

∗Research supported by the EC project VIBES

1



an adaptive threshold module. The algorithm was intended to run close to
real-time on a regular PC. We achieved linear complexity with less than 12
operations required per pixel, including camera motion compensation.

The paper is structured as follows: Section 2 presents the problems encoun-
tered in shot cut detection and how some of the existing techniques handle them.
Section 3 describes the motion compensation module. Section 4 presents the
adaptive thresholding mechanism. Section 5 introduces our approach to smooth
cuts detection and Section 6 presents the keyframe extraction algorithm. The
conclusions are drawn in Section 7.

2 Previous work

Most existing algorithms define a dissimilarity metric for comparing consecutive
frames. The metric must be insensitive to motion, while responding well to scene
cuts. Usual metrics include comparing histograms, blocks (cross-correlation),
image features or pixel intensities. For MPEG video some authors use analysis
in the compressed domain [10].

We start with a short review of these methods:
- Color histograms - are rather insensitive to motion, but they can miss shot
cuts between frames with similar color distribution. To include some spatial in-
formation most authors prefer to split the image into blocks and compute local
histograms, e.g.[3, 8].
- Joint Histograms [9] - try to improve the performance of regular color his-
tograms by adding other image features like edge density, texturedness, gradient
magnitude, etc.
- Feature based detection. Zabih [14] presents an algorithm based on analyzing
entering/exiting edges between consecutive frames. During a cut many edges
appear far from the location of old edges, while old edges disappear. His method
also includes a global motion compensation.
- Average pixel difference [15]. Simply subtracting the pixel intensities in two
consecutive frames is a useful measure. However, the generated difference de-
pends very much on the motion magnitude.
- Block-based motion estimation. A more complex technique is used by Porter
[11]. In her approach, rectangular blocks are matched in order to compensate
for motion. Matching is done in the frequency domain. Blocks having only
low-frequency components are not used.
- Block Likelihood Ratio [2]. Each frame is split into an array of 8x8 blocks
of the same size. A two blocks thick border is left out in a frame and the 16
middle blocks are considered one by one. Each of the middle blocks in the cur-
rent frame is compared to its 9 neighbors in the previous frame. The neighbor
with the minimum distance will give the final value. If the average distance for
the middle blocks is greater than a certain threshold, a shot change is declared.

2



Figure 1: Two consecutive frames for which L takes on a small value. They are
not detected as a shot cut by the Block Likelihood Ratio method.

The likelihood ratio used is:

L =

σk+σk−1

2
+

(

mk−mk−1

2

)2

σk × σk−1

where mk and σk denote the mean and variance of intensity of a given region in
frame k. The likelihood ratio is computed for the 3 color components (R,G,B)
and the partial results are combined.

We implemented the block likelihood ratio method for comparison. We used
about 15 minutes of various video sequences, including documentaries, sport
sequences, news broadcasts and a movie fragment. Out of 176 cuts, 146 have
been correctly detected, and there were 37 false alarms. This corresponds to
recall/precision rates of 146

176
= 82% and 146

146+37
= 79%, respectively. The recall

measure indicates how many of the real cuts were detected. Precision says how
many of the cuts found by the algorithm were valid.

During experiments, the value of L was of the order of hundreds or even
thousands for shot cuts, and less than 10 in the other cases. Despite of this
excellent contrast, there are many simple cases in which the algorithm fails to
detect cuts (Fig 1). On the other hand, almost any large motion caused series
of false detections.

3 Global motion compensation

Similar to the approach of Bouthemy (see Refs. [1]), we compute for each pair of
frames an affine transformation which warps the first frame into the second. The
two frames are compared only after they are aligned. The resulting difference
is used as input to the adaptive thresholding algorithm.

Computation of the transformation is a two-step process. In the first stage,
we split the image into 20 × 15 blocks. For each block we compute the best
motion vector. In the second stage, we will try to find a transformation which
approximates the entire set of motion vectors. The most complex part is com-
puting the motion vectors. Basically, we want to find for each rectangular block

3



the position in the second image where the cross-correlation is maximum. To
reduce the number of operations, a hierarchical search is utilized. We start from
a very small scale version of the image, where each of the initial blocks becomes
a single pixel. At each scale, we shift a block with one pixel in each direction.
The best of the 9 displacements is chosen as starting position for the next scale.
A displacement of one pixel at a certain scale corresponds to a displacement of
2s pixels in the original image, where s is the current scale . The size of the
blocks is doubled at each step, but the search space is always limited to one
pixel away from the start positions. The total number of operations is less than
12N1, where N is the number of pixels.

The horizontal and vertical components of the motion vectors are weighted
separately. The weight along a direction is computed as w = b−a

b+1
, where a is

the score of the best matching position and b is the score of the second best
position. Matching scores take values between 0 and 255. The weight is trying
to model both the quality of the matching and the confidence level. A small
a means that the match is good. If the second best match is good too, the
block has a flat profile along the considered direction and the confidence of the
motion vector drops. Compared to the simple difference b−a, the above formula
increases a little the weight of a good match having a low confidence. This gave
better results in our experiments.

To find an affine transformation which approximates all the motion vectors
as good as possible, we start by writing a set of equations of the form:





x′

y′

1



 =





a b c

d e f

0 0 1



 .





x

y

1





Each motion vector is defined by its start and end points - (pi,p’i), where
pi=(xi,yi,1) and p’i=(x’i,y’i,1). The affine transformation is given by (a,b,c,d,e,f).
For the entire set of motion vectors, we have two matrix equations:









p1

p2

. . .

pn









.





a

b

c



 =









x′

1

x′

2

. . .

x′

n









⇔ P.A=X’, and









p1

p2

. . .

pn









.





d

e

f



 =









y′

1

y′

2

. . .

y′

n









⇔P.B=Y’

with A and B as unknowns. Each line of the two matrix equations has an
associated weight wi - the confidence level for the corresponding motion
vector. To find the best A=(a,b,c) coefficients, we have to minimize

L = [W (PA − X ′)]
t
[W (PA − X ′)]

where W is a N × N matrix containing weights:

Wi,j =

{

wi, i = j

0, i 6= j

By differentiating with respect to A and taking into account that W is diagonal,

19N(1 + 1

4
+ 1

16
+ . . . + 1

4n ) < 9N
4

3

4



Figure 2: Plot of the average pixel difference between consecutive frames. Spikes
correspond to shot cuts.

we get:
(WP )t[W (PA − X ′)] = P tW 2PA − P tW 2X ′ = 0 ⇔

A = (P tW 2P )−1.(P tW 2X ′), and similarly
B = (P tW 2P )−1.(P tW 2Y ′)
The maximum motion the algorithm can handle is equal to twice the size

of a block, minus 1 pixel. At the smallest scale each block is represented by
a single pixel. Moving it one position in a direction corresponds to l pixels
in the original image, where l is the original block size. In the next steps the
maximum displacement will increase up to 2*l -1 pixels. A 20x15 blocks grid
allows a maximum horizontal displacement equal to one tenth of the image
length.

For color images having 352 × 240 pixels the processing speed is about 11
frames/second on a Pentium III at 700 MHz. In the absence of object motion
the quality of the estimation is quite good - the accumulated error after 450
frames is still acceptable (Fig 7, to be discussed later, illustrates this).

4 Adaptive thresholding

We chose as similarity metric the average pixel difference between the motion
compensated (i.e. affinely matched) images. Following the approach described
by Yusoff [13], we tried to handle motion problems by using an adaptive thresh-
old. In most cases the difference caused by motion changes little from one
frame to the next. If we plot the difference between consecutive frames, shot
cuts appear as sudden increases of the difference (Fig 2).

We analyze the value of the differences in a sliding window of 15-20 frames
and compute several statistical parameters. This allows us to decide whether
there is a scene cut between the two frames in the middle of the window. The
algorithm has been refined through experiments and consists of checking the

5



Figure 3: On the upper row: cases in which a shot cut is found. Bottom row:
no shot cut, because the variance is too high (4), the difference increases linearly
(5) or the difference is smaller than the minimum threshold (6).

following conditions:
- The difference corresponding to the middle frame pair is the largest within

the considered window. This follows the assumption that the difference caused
by the scene change is always bigger than the difference caused by motion. Two
typical examples of shot cuts are cases 1 and 2 from Fig 3. Note that in the
first case, the difference corresponding to the cut is smaller than almost any
difference from case 2.

- The difference must be higher than a fixed minimum threshold.
- The current difference is larger than a multiple of the average difference

(computed over the entire window). The multiplication coefficient is propor-
tional to the variance within the window. This criterion is related to the obser-
vation that moving persons or objects close to the camera generate an irregular
profile of the difference. An example of such a profile is illustrated in case 4
from Fig 3.

- An exception from the previous criterion is if the average difference of the
previous frames is very high and the average difference of the next frames is
very low or vice versa, because the current difference delimits a high activity
shot from a low activity one - case 3 from Fig 3.

- If we reached this point, we look for a linear increasing tendency of the dif-
ference in the first half and a decreasing tendency in the second half (a triangular
shape). We extrapolate the evolution of the difference from the beginning/end
of the window towards the middle. If the maximum of the two predicted dif-
ferences is comparable to the actual difference in the middle, then the cut is
rejected - case 5 from Fig 3. This is a situation encountered when there is a fast
object passing in front of the camera.

On the 15 minutes data set used for comparison, our algorithm detected
169 out of 176 cuts, with 7 false alarms (96% recall and 96% precision). These
results compare favorably with those of the Block Likelihood Ratio method (see
Section 2).

6



Figure 4: Two consecutive frames which are difficult to find as a shot cut. Both
the color components and the shot activity are very similar.

A larger data set of 40 short video sequences, having about 35 minutes,
produced the following results: 450 out of 464 cuts were detected, with 35 false
alarms. This corresponds to 96% recall and 92% precision rate. The content of
the second data set ranged from news broadcasts and commercial presentations
to film fragments and sport sequences. After the tests we tried to classify the
situations where the algorithm failed. Sudden object or camera motion triggered
almost all the false alarms. Continuous motion had as effect a raise in the value
of the threshold, which made the algorithm miss a few true shot cuts. Other
missed cuts appeared when the two images had moderate motion but were very
similar in content (Fig 4).

For a third data set, consisting of two TV news sequences (one hour in total),
the detection rates were particularly good. Out of 601 cuts, 596 were correctly
detected. There were 17 false alarms, 14 caused by camera flashes at press
conferences. This corresponds to 99% recall and 97% precision.

5 Detecting smooth cuts

For video effects like dissolves or fades we can not confine the analysis to pairs
of consecutive frames. For example, the frames in Fig 5 are taken during such a
transition. The difference caused by the dissolve is negligible compared to the
difference caused by motion.

A good smooth cut detector must be able to track features along 2-3 seconds.
If too many of these features are lost during that period and new ones appear,
we conclude that there has been a smooth cut. The easiest solution would be
to compute the optical flow for several frames and check the evolution of each
individual pixel. The drawback of this approach is the computational complexity
- several seconds are needed for each pair of frames. This translates to minutes
of computation for a single second of video data.

Some experiments were carried out using the global motion compensation
described above. Starting from the current frame, we compose the transfor-

7



Figure 5: A smooth cut. Upper row: starting and ending frames. Lower row:
two consecutive frames in the middle of the cut. Both scenes are highly textured
(dense vegetation) and the camera is also moving (see Refs. [17])

8



Figure 6: Results of subtracting frame i from frame i+20, after motion com-
pensation. In the first frames there is large object motion. The three “humps”
correspond to smooth cuts

mations between consecutive frames, so that we obtain a transformation which
aligns frame 1 to frame N:

T (1, N) = T (1, 2) ◦ T (2, 3) ◦ ... ◦ T (N − 1, N)
Figure 6 shows the evolution of the difference, when aligning and subtracting

images 20 frames apart. We distinguish two cases with large difference:
a) The difference is small, with sudden increases. These cases correspond to

smooth cuts.
b) The difference is constantly big. This means that there is significant object

motion, which can not be compensated. The algorithm will fail to detect smooth
cuts, but the video fragment can be analyzed by a more complex algorithm, at
the cost of more computations (see Refs. [7, 5]).

The accuracy of our algorithm depends drastically on the type of the ana-
lyzed sequence. On a documentary containing long shots of landscapes, with
camera motion only (see Refs. [17]), out of 154 smooth cuts, 149 were detected
and there were 10 false alarms. This corresponds to a recall rate of 149/154 =
96% and a precision of 149/159 = 93%. On the other hand it performed poorly
for a football match: the recall rate dropped to 30% and the precision to 60%.

6 Keyframe extraction

Key frames should be a very brief description of the video content, preserving
at the same time the most interesting characteristics. It is rather difficult to
define which frames are “interesting” and which are not. Existing approaches
can be classified in:
- extracting the first, middle or last frame of every shot,
- motion analysis by using optical flow. The frames at the local minima of
motion are chosen as keyframes.
- clustering frames based on their similarity. The similarity is computed by
looking at the image histograms or other cues [16, 4].
- mosaic images (see [12])

A detailed review of these methods can be found in [6]. Our method uses
informations about the shot boundaries and the motion within each shot. The

9



Figure 7: Panoramic image obtained from 450 successive frames. The camera
started in the upper-right part of the image, panned to the left and then zoomed
out.

first frame of each shot is chosen as keyframe. Depending on the magnitude of
motion, we may need to extract additional keyframes. We chain the transfor-
mations between consecutive frames and we compute the overlapping surface of
each frame, relative to the last keyframe. If the overlapping surface becomes
too small, we pick a representative keyframe for this segment. The keyframe
must be close to the current position (the last 2 seconds) and have minimum
local motion. The keyframe must be located at the end of the current segment,
otherwise it can be too similar to the previous keyframe. Small local motion
gives a better chance of picking a relevant frame and ensures less motion blur.

A popular method of synthesizing the video content are mosaic images
(e.g.[12]). They are suited when the video sequence presents landscapes or
other mostly static scenes. By cutting stripes from each frame and pasting
them together, we can obtain a single panoramic image. The technique is the
same as for motion compensation: successive frames are aligned by a geometric
transformation. At each step, the mosaic is extended with the parts of the new
frame which fell outside the existing image. To illustrate the accuracy of the
motion estimation, we present such a mosaic image in Fig 7. The keyframes of
the corresponding video sequence are shown in Fig 8.

10



Figure 8: Frames corresponding to the mosaic image from Fig7. The first frame
corresponds to the upper-right corner of the mosaic image. The camera is pan-
ning to the left and then zooms out.

7 Conclusions

We have presented a global motion compensation and adaptive thresholding
algorithm for detecting shot cuts. The algorithm has linear complexity, which
allows it to run in real-time. For abrupt cuts, it achieves consistently detection
rates of more than 90% for most types of video data. Its most interesting feature
is the motion compensation module, which is used both to improve detection
of video shot cuts and as decision criterion for extracting keyframes. Due to
the fact that it can not track individual objects, it has limited capabilities for
detecting smooth cuts. It can, however, focus the attention of more complex
algorithms to the segments where these cuts may appear.

References

[1] P. Bouthemy, Y. Dufournaud, R. Fablet, R. Mohr, S.Peleg, A. Zomet (1999)
Video Hyper-links Creation for Content-based Browsing and Navigation.
In: Proc. Workshop on Content-Based Multimedia Indexing, Toulouse,
France

[2] Rakesh Dugad, K. Ratakonda, and N. Ahuja (1998) Robust Video Shot
Change Detection. In: IEEE Workshop on Multimedia Signal Processing,
Redondo Beach, California, pp. 376-381

[3] Yihong Gong, and Xin Liu (2000) Video Shot Segmentation and Classi-
fication. In: International Conference on Pattern Recognition (ICPR’00),
Volume 1, pp 860-863, Barcelona, Spain

11



[4] R. Hammoud, R. Mohr (2000) A probabilistic Framework of Selecting Ef-
fective Key-Frames for Video Browsing and Indexing. In: International
workshop on Real-Time Image Sequence Analysis, Oulu, Finland

[5] A. Hampapur, R. C. Jain, T. Weymouth (1995) Production Model Based
Digital Video Segmentation. In: Journal of Multimedia Tools and Applica-
tions, Vol. 1, No. 1, pp. 9-46

[6] Y. Li, T. Zhang and D. Tretter (2001) An overview of video abstraction
techniques. In: HP Laboratory Technical Report, HPL-2001-191

[7] Rainer Lienhart (2001) Reliable Dissolve Detection. In: Storage and Re-
trieval for Media Databases, Proc. SPIE 4315, pp. 219-230

[8] A. Nagasaka, Y. Tanaka (1992) Automatic Video Indexing and Full-Video
Search for Object Appearances. In: IFIP Proc. of Visual Database Systems,
pp. 113-127

[9] Greg Pass, Ramin Zabih (1999) Comparing Images Using Joint Histograms.
In: ACM Journal of Multimedia Systems, May 1999, Volume 7 issue 3,
pp.234-240

[10] N.V. Patel, I.K. Sethi (1996) Compressed Video Processing for Cut Detec-
tion. In: IEEE Proceedings: Vision, Image and Signal Processing, Vol. 143,
pp. 315-323

[11] S. Porter, M. Mirmehdi, B.Thomas (2001) Detection and classification of
shot transitions. In: Proceedings of the 12th British Machine Vision Con-
ference, BMVA Press, pages 73-82

[12] B. Rousso, S. Peleg, I. Finci (1997) Mosaicing with Generalized Strips. In:
DARPA Image Understanding Workshop, pp. 255-260, New Orleans, USA

[13] Y. Yusoff, W.J. Christmas, J.V. Kittler (2000) Video Shot Cut Detection
Using Adaptive Thresholding. In: British Machine Video Conference, Bris-
tol

[14] R. Zabih, J. Miller, K. Mai (1995) A Feature-Based Algorithm for De-
tecting and Classifying Scene Breaks. In: Proceedings of the third ACM
International Conference on Multimedia, pp. 189-200

[15] H.J. Zhang, A. Kankanhalli, S.W. Smoliar (1993) Automatic Partitioning
of Full-Motion Video. In: Multimedia Systems, Vol. 1, No. 1, pp. 10-28

[16] Y. Zhuang, Y. Rui, T. Huang and S. Mehrotra (1998) Adaptive Key Frame
Extraction Using Unsupervised Clustering. In: Proc. of IEEE International
Conference on Image Processing, Chicago, IL, p.866-870

[17] Video sequences: “New indians”, ”A new horizon” – http://www.open-
video.org/; Canal+ TV Belgium, evening news, 30/11/2002, 12/09/2002

12


